Learning to concentrate (for fun and profit!).

In environmental science, determining the concentration of a substance (as in a contaminate) is an important component of determining health risk, costs to remediate or likely time required for the system to "recover". Concentration is usually expressed as a mass ratio as follows.

$$
\text { Generic mass ratio } \quad \underset{\text { (mass of entire sample) }}{\text { (mass of substance of interest) }}
$$

Example: 35 grams of salt dissolved into 965 grams of water.. What is the concentration of salt, describe as percent mass

$$
\text { Concentration of salt }=\quad\left[\frac{(35 \text { grams of salt })}{[35 \text { grams of salt }+965 \text { grams of water }=1000 \text { grams total (of solution })]}\right.
$$

$$
\text { Concentration of salt }=\quad 35 / 1000=.035 \quad(=35 \text { parts per thousand })
$$

Lab procedure.

1. Place 10 drops of blue dye (just squeeze it out) into a Dixie-cup. Use a small, plastic pipette to suck up .5 ml . (look at the graduations on the side of the pipette!) and add to 80 mL of water in 100 mL -size beaker (or larger).

Assuming that the dye has a density of 1 gram per mL , determine the $\%$ mass of dye in your solution. (show work below).

Withdraw 10 mL of this, first solution and place in a small test tube as your first reference sample.
2. Now withdraw 2 mL of solution FROM that first test tbue (using the pipette again, filled to the 1 mL mark and repeating) and place in second, separate test tube. Now add eight (8) more milli-liters of fresh water to the test tube (you should have 10 mL , total)
a. Calculate the mass of dye in this sample (grams)
b. Determine the new concentration of dye. (mass ratio) in this sample.
3. Repeat the process of described in step 2, as many times as you need (possible 3 or 4 or 5 more times) until the "solution" looks like fresh water (you can't see any dye) recording your value of dye concentration (percent mass) for each tube.

Youi have just created a set of "standards" for visual comparison! (take a cell-phone picture

Lavg Question: What is the "threshold" concentration (the point at which there may be dye, but you can't see it with your eyes?

Lab challenge: Clark will bring over an "unknown sample" of dye and, you will, using your "comparison" tubes, estimate the concentration. If you are within $+/-50 \%$ of correct, I'll give you +2 lab points E.C.

